Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPdxS Shell

نویسندگان

  • Yi Xie
  • Wenhui Chen
  • Giovanni Bertoni
  • Ilka Kriegel
  • Mo Xiong
  • Neng Li
  • Mirko Prato
  • Andreas Riedinger
  • Ayyappan Sathya
  • Liberato Manna
چکیده

We demonstrate the stabilization of the localized surface plasmon resonance (LSPR) in a semiconductor-based core-shell heterostructure made of a plasmonic CuS core embedded in an amorphous-like alloyed CuPd x S shell. This heterostructure is prepared by reacting the as-synthesized CuS nanocrystals (NCs) with Pd2+ cations at room temperature in the presence of an electron donor (ascorbic acid). The reaction starts from the surface of the CuS NCs and proceeds toward the center, causing reorganization of the initial lattice and amorphization of the covellite structure. According to density functional calculations, Pd atoms are preferentially accommodated between the bilayer formed by the S-S covalent bonds, which are therefore broken, and this can be understood as the first step leading to amorphization of the particles upon insertion of the Pd2+ ions. The position and intensity in near-infrared LSPRs can be tuned by altering the thickness of the shell and are in agreement with the theoretical optical simulation based on the Mie-Gans theory and Drude model. Compared to the starting CuS NCs, the amorphous CuPd x S shell in the core-shell nanoparticles makes their plasmonic response less sensitive to a harsh oxidation environment (generated, for example, by the presence of I2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals

Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >1022 cm-3 to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of ...

متن کامل

Tuning the Localized Surface Plasmon Resonance in Cu2–xSe Nanocrystals by Postsynthetic Ligand Exchange

Nanoparticles exhibiting localized surface plasmon resonances (LSPR) are valuable tools traditionally used in a wide field of applications including sensing, imaging, biodiagnostics and medical therapy. Plasmonics in semiconductor nanocrystals is of special interest because of the tunability of the carrier densities in semiconductors, and the possibility to couple the plasmonic resonances to qu...

متن کامل

Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment

We studied the structural and compositional transformations of colloidal covellite (CuS) nanocrystals (and of djurleite (Cu1.94S) nanocrystals as a control) when exposed to divalent cations, as Cd2+ and Hg2+, at room temperature in organic solvents. All the experiments were run in the absence of phosphines, which are a necessary ingredient for cation exchange reactions involving copper chalcoge...

متن کامل

Tuning the LSPR in copper chalcogenide nanoparticles by cation intercalation, cation exchange and metal growth.

Localized surface plasmon resonances (LSPRs) of degenerately doped copper chalcogenide nanoparticles (NPs) (Cu2-xSe berzelianite and Cu1.1S covellite) have been modified applying different methods. The comparison of the cation exchange (Cu2-xSe) and intercalation (Cu1.1S) of Ag(I) and Cu(I) has shown that Ag(I) causes a non reversible, air stable shift of the LSPR. This was compared to the infl...

متن کامل

Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances.

Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2017